Using Polynomials to Simplify Fixed Pattern Noise and Photometric Correction of Logarithmic CMOS Image Sensors

نویسندگان

  • Jing Li
  • Alireza Mahmoodi
  • Dileepan Joseph
چکیده

An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses must be calibrated and corrected due to mismatch and process variation during fabrication. Unlike literature approaches, which employ circuit-based models of varying complexity, this paper introduces a novel approach based on low-degree polynomials. Although each pixel may have a highly nonlinear response, an approximately-linear FPN calibration is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction requires only arithmetic, and an optimal fixed-point implementation is readily derived, subject to a user-specified number of bits per pixel. Using a monotonic spline, involving cubic polynomials, photometric calibration is also possible without a circuit-based model, and fixed-point photometric correction requires only a look-up table. The approach is experimentally validated with a logarithmic CMOS image sensor and is compared to a leading approach from the literature. The novel approach proves effective and efficient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling, calibration, and rendition of color logarithmic CMOS image sensors

Logarithmic CMOS image sensors encode a high dynamic range scene in a manner that roughly approximates human perception whereas linear sensors with equivalent quantization suffer from saturation or loss of detail. Moreover, the continuous response of logarithmic pixels permit high frame rates and random access, features that are useful in motion detection. This paper describes how to model, cal...

متن کامل

Simplified Fixed Pattern Noise Correction for Logarithmic Sensors

The quality of images from high dynamic range logarithmic sensors is severely degraded by Fixed Pattern Noise (FPN), caused by a nonuniformity in the responses of individual pixels. The source of this fixed pattern noise has been explained by Joseph and Collins [1] using a model which represents the response of each pixel in terms of three parameters an offset voltage, a gain and a leakage curr...

متن کامل

Neural Monitoring With CMOS Image Sensors

Implantable image sensors have several biomedical applications due to their miniature size, light weight, and low power consumption achieved through sub-micron standard CMOS (Complementary Metal Oxide Semiconductor) technologies. The main applications are in specific cell labeling, neural activity detection, and biomedical imaging. In this paper the recent research studies on implantable CMOS i...

متن کامل

Linear-Logarithmic CMOS Image Sensor with Reduced FPN Using Photogate and Cascode MOSFET

We propose a linear-logarithmic CMOS image sensor with reduced fixed pattern noise (FPN). The proposed linear-logarithmic pixel based on a conventional 3-transistor active pixel sensor (APS) structure has additional circuits in which a photogate and a cascade MOSFET are integrated with the pixel structure in conjunction with the photodiode. To improve FPN, we applied the PMOSFET hard reset meth...

متن کامل

An Analog Gamma Correction Scheme for High Dynamic Range CMOS Logarithmic Image Sensors

In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO) based analog-to-digital converter (ADC) to perform the gamma correction during the analog-to-digital conversion. As a result, the qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015